DBSCAN++: Towards fast and scalable density clustering

10/31/2018
by   Jennifer Jang, et al.
0

DBSCAN is a classical density-based clustering procedure which has had tremendous practical relevance. However, it implicitly needs to compute the empirical density for each sample point, leading to a quadratic worst-case time complexity, which may be too slow on large datasets. We propose DBSCAN++, a simple modification of DBSCAN which only requires computing the densities for a subset of the points. We show empirically that, compared to traditional DBSCAN, DBSCAN++ can provide not only competitive performance but also added robustness in the bandwidth hyperparameter while taking a fraction of the runtime. We also present statistical consistency guarantees showing the trade-off between computational cost and estimation rates. Surprisingly, up to a certain point, we can enjoy the same estimation rates while lowering computational cost, showing that DBSCAN++ is a sub-quadratic algorithm that attains minimax optimal rates for level-set estimation, a quality that may be of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro