Dataflow programming for the analysis of molecular dynamics with AViS, an analysis and visualization software application

11/19/2019
by   Kai Pua, et al.
0

The study of molecular dynamics simulations is largely facilitated by analysis and visualization toolsets. However, these toolsets are often designed for specific use cases and those only, while scripting extensions to such toolsets is often exceedingly complicated. To overcome this problem, we designed a software application called AViS which focuses on the extensibility of analysis. By utilizing the dataflow programming (DFP) paradigm, algorithms can be defined by execution graphs, and arbitrary data can be transferred between nodes using visual connectors. Extension nodes can be implemented in either Python, C++, and Fortran, and combined in the same algorithm. AViS offers a comprehensive collection of nodes for sophisticated visualization state modifications, thus greatly simplifying the rules for writing extensions. Input files can also be read from the server automatically, and data is fetched automatically to improve memory usage. In addition, the visualization system of AViS uses physically-based rendering techniques, improving the 3D perception of molecular structures for interactive visualization. By performing two case studies on complex molecular systems, we show that the DFP workflow offers a much higher level of flexibility and extensibility when compared to legacy workflows. The software source code and binaries for Windows, MacOS, and Linux are freely available at https://avis-md.github.io/.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset