Data-scarce surrogate modeling of shock-induced pore collapse process

05/31/2023
by   Siu Wun Cheung, et al.
0

Understanding the mechanisms of shock-induced pore collapse is of great interest in various disciplines in sciences and engineering, including materials science, biological sciences, and geophysics. However, numerical modeling of the complex pore collapse processes can be costly. To this end, a strong need exists to develop surrogate models for generating economic predictions of pore collapse processes. In this work, we study the use of a data-driven reduced order model, namely dynamic mode decomposition, and a deep generative model, namely conditional generative adversarial networks, to resemble the numerical simulations of the pore collapse process at representative training shock pressures. Since the simulations are expensive, the training data are scarce, which makes training an accurate surrogate model challenging. To overcome the difficulties posed by the complex physics phenomena, we make several crucial treatments to the plain original form of the methods to increase the capability of approximating and predicting the dynamics. In particular, physics information is used as indicators or conditional inputs to guide the prediction. In realizing these methods, the training of each dynamic mode composition model takes only around 30 seconds on CPU. In contrast, training a generative adversarial network model takes 8 hours on GPU. Moreover, using dynamic mode decomposition, the final-time relative error is around 0.3 predictive power of the methods at unseen testing shock pressures, where the error ranges from 1.3 extrapolatory cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset