Data Masking with Privacy Guarantees

01/08/2019
by   Anh T. Pham, et al.
0

We study the problem of data release with privacy, where data is made available with privacy guarantees while keeping the usability of the data as high as possible --- this is important in health-care and other domains with sensitive data. In particular, we propose a method of masking the private data with privacy guarantee while ensuring that a classifier trained on the masked data is similar to the classifier trained on the original data, to maintain usability. We analyze the theoretical risks of the proposed method and the traditional input perturbation method. Results show that the proposed method achieves lower risk compared to the input perturbation, especially when the number of training samples gets large. We illustrate the effectiveness of the proposed method of data masking for privacy-sensitive learning on 12 benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset