Data-driven Probabilistic Atlases Capture Whole-brain Individual Variation

06/06/2018
by   Yuankai Huo, et al.
4

Probabilistic atlases provide essential spatial contextual information for image interpretation, Bayesian modeling, and algorithmic processing. Such atlases are typically constructed by grouping subjects with similar demographic information. Importantly, use of the same scanner minimizes inter-group variability. However, generalizability and spatial specificity of such approaches is more limited than one might like. Inspired by Commowick "Frankenstein's creature paradigm" which builds a personal specific anatomical atlas, we propose a data-driven framework to build a personal specific probabilistic atlas under the large-scale data scheme. The data-driven framework clusters regions with similar features using a point distribution model to learn different anatomical phenotypes. Regional structural atlases and corresponding regional probabilistic atlases are used as indices and targets in the dictionary. By indexing the dictionary, the whole brain probabilistic atlases adapt to each new subject quickly and can be used as spatial priors for visualization and processing. The novelties of this approach are (1) it provides a new perspective of generating personal specific whole brain probabilistic atlases (132 regions) under data-driven scheme across sites. (2) The framework employs the large amount of heterogeneous data (2349 images). (3) The proposed framework achieves low computational cost since only one affine registration and Pearson correlation operation are required for a new subject. Our method matches individual regions better with higher Dice similarity value when testing the probabilistic atlases. Importantly, the advantage the large-scale scheme is demonstrated by the better performance of using large-scale training data (1888 images) than smaller training set (720 images).

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 3

page 4

page 7

02/09/2015

Deep Neural Networks for Anatomical Brain Segmentation

We present a novel approach to automatically segment magnetic resonance ...
07/27/2016

Spatial probabilistic pulsatility model for enhancing photoplethysmographic imaging systems

Photolethysmographic imaging (PPGI) is a widefield non-contact biophoton...
10/29/2021

Data-driven Uncertainty Quantification in Computational Human Head Models

Computational models of the human head are promising tools for estimatin...
03/07/2019

Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation

We consider the problem of segmenting a biomedical image into anatomical...
03/12/2021

Hippocampal formation-inspired probabilistic generative model

We constructed a hippocampal formation (HPF)-inspired probabilistic gene...
03/13/2021

A Few-Shot Learning Approach for Accelerated MRI via Fusion of Data-Driven and Subject-Driven Priors

Deep neural networks (DNNs) have recently found emerging use in accelera...
12/08/2019

The Probabilistic Backbone of Data-Driven Complex Networks: An example in Climate

Correlation Networks (CNs) inherently suffer from redundant information ...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.