Data-driven low-dimensional dynamic model of Kolmogorov flow

Reduced order models (ROMs) that capture flow dynamics are of interest for decreasing computational costs for simulation as well as for model-based control approaches. This work presents a data-driven framework for minimal-dimensional models that effectively capture the dynamics and properties of the flow. We apply this to Kolmogorov flow in a regime consisting of chaotic and intermittent behavior, which is common in many flows processes and is challenging to model. The trajectory of the flow travels near relative periodic orbits (RPOs), interspersed with sporadic bursting events corresponding to excursions between the regions containing the RPOs. The first step in development of the models is use of an undercomplete autoencoder to map from the full state data down to a latent space of dramatically lower dimension. Then models of the discrete-time evolution of the dynamics in the latent space are developed. By analyzing the model performance as a function of latent space dimension we can estimate the minimum number of dimensions required to capture the system dynamics. To further reduce the dimension of the dynamical model, we factor out a phase variable in the direction of translational invariance for the flow, leading to separate evolution equations for the pattern and phase dynamics. At a model dimension of five for the pattern dynamics, as opposed to the full state dimension of 1024 (i.e. a 32x32 grid), accurate predictions are found for individual trajectories out to about two Lyapunov times, as well as for long-time statistics. The nearly heteroclinic connections between the different RPOs, including the quiescent and bursting time scales, are well captured. We also capture key features of the phase dynamics. Finally, we use the low-dimensional representation to predict future bursting events, finding good success.

READ FULL TEXT

page 20

page 21

research
01/11/2023

Dynamics of a data-driven low-dimensional model of turbulent minimal Couette flow

Because the Navier-Stokes equations are dissipative, the long-time dynam...
research
09/11/2023

Reaction coordinate flows for model reduction of molecular kinetics

In this work, we introduce a flow based machine learning approach, calle...
research
04/11/2022

Learning two-phase microstructure evolution using neural operators and autoencoder architectures

Phase-field modeling is an effective mesoscale method for capturing the ...
research
02/29/2020

Determination of Latent Dimensionality in International Trade Flow

Currently, high-dimensional data is ubiquitous in data science, which ne...
research
04/28/2023

Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of spatio-temporal processes

Predicting the evolution of systems that exhibit spatio-temporal dynamic...
research
08/26/2021

Disentangling ODE parameters from dynamics in VAEs

Deep networks have become increasingly of interest in dynamical system p...
research
02/26/2022

Direct data-driven forecast of local turbulent heat flux in Rayleigh-Bénard convection

A combined convolutional autoencoder-recurrent neural network machine le...

Please sign up or login with your details

Forgot password? Click here to reset