Data Curation APIs
Understanding and analyzing big data is firmly recognized as a powerful and strategic priority. For deeper interpretation of and better intelligence with big data, it is important to transform raw data (unstructured, semi-structured and structured data sources, e.g., text, video, image data sets) into curated data: contextualized data and knowledge that is maintained and made available for use by end-users and applications. In particular, data curation acts as the glue between raw data and analytics, providing an abstraction layer that relieves users from time consuming, tedious and error prone curation tasks. In this context, the data curation process becomes a vital analytics asset for increasing added value and insights. In this paper, we identify and implement a set of curation APIs and make them available (on GitHub) to researchers and developers to assist them transforming their raw data into curated data. The curation APIs enable developers to easily add features - such as extracting keyword, part of speech, and named entities such as Persons, Locations, Organizations, Companies, Products, Diseases, Drugs, etc.; providing synonyms and stems for extracted information items leveraging lexical knowledge bases for the English language such as WordNet; linking extracted entities to external knowledge bases such as Google Knowledge Graph and Wikidata; discovering similarity among the extracted information items, such as calculating similarity between string, number, date and time data; classifying, sorting and categorizing data into various types, forms or any other distinct class; and indexing structured and unstructured data - into their applications.
READ FULL TEXT