Data Consistency Approach to Model Validation

08/17/2018 ∙ by Andreas Svensson, et al. ∙ 0

In scientific inference problems, the underlying statistical modeling assumptions have a crucial impact on the end results. There exist, however, only a few automatic means for validating these fundamental modelling assumptions. The contribution in this paper is a general criterion to evaluate the consistency of a set of statistical models with respect to observed data. This is achieved by automatically gauging the models' ability to generate data that is similar to the observed data. Importantly, the criterion follows from the model class itself and is therefore directly applicable to a broad range of inference problems with varying data types. The proposed data consistency criterion is illustrated and evaluated using three synthetic and two real data sets.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.