Data Complexity: A New Perspective for Analyzing the Difficulty of Defect Prediction Tasks

05/05/2023
by   Xiaohui Wan, et al.
0

Defect prediction is crucial for software quality assurance and has been extensively researched over recent decades. However, prior studies rarely focus on data complexity in defect prediction tasks, and even less on understanding the difficulties of these tasks from the perspective of data complexity. In this paper, we conduct an empirical study to estimate the hardness of over 33,000 instances, employing a set of measures to characterize the inherent difficulty of instances and the characteristics of defect datasets. Our findings indicate that: (1) instance hardness in both classes displays a right-skewed distribution, with the defective class exhibiting a more scattered distribution; (2) class overlap is the primary factor influencing instance hardness and can be characterized through feature, structural, instance, and multiresolution overlap; (3) no universal preprocessing technique is applicable to all datasets, and it may not consistently reduce data complexity, fortunately, dataset complexity measures can help identify suitable techniques for specific datasets; (4) integrating data complexity information into the learning process can enhance an algorithm's learning capacity. In summary, this empirical study highlights the crucial role of data complexity in defect prediction tasks, and provides a novel perspective for advancing research in defect prediction techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset