Data-based Receding Horizon Control of Linear Network Systems

03/22/2020 ∙ by Ahmed Allibhoy, et al. ∙ 0

We propose a distributed data-based predictive control scheme to stabilize a network system described by linear dynamics. Agents cooperate to predict the future system evolution without knowledge of the dynamics, relying instead on learning a data-based representation from a single sample trajectory. We employ this representation to reformulate the finite-horizon Linear Quadratic Regulator problem as a network optimization with separable objective functions and locally expressible constraints. We show that the controller resulting from approximately solving this problem using a distributed optimization algorithm in a receding horizon manner is stabilizing. We validate our results through numerical simulations.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.