Danger-aware Weighted Advantage Composition of Deep Reinforcement Learning for Robot Navigation

09/11/2018
by   Wei Zhang, et al.
0

Self-navigation, referring to automatically reaching the goal while avoiding collision with obstacles, is a fundamental skill of mobile robots. Currently, Deep Reinforcement Learning (DRL) can enable the robot to navigate in a more complex environment with less computation power compared to conventional methods. However, it is time-consuming and hard to train the robot to learn goal-reaching and obstacle-avoidance skills simultaneously using DRL-based algorithms. In this paper, two Dueling Deep Q Networks (DQN) named Goal Network and Avoidance Network are used to learn the goal-reaching and obstacle-avoidance skills individually. A novel method named danger-aware advantage composition is proposed to fuse the two networks together without any redesigning and retraining. The composed Navigation Network can enable the robot to reach the goal right behind the wall and to navigate in unknown complexed environment safely and quickly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset