DeepAI AI Chat
Log In Sign Up

D-GAN: Deep Generative Adversarial Nets for Spatio-Temporal Prediction

by   Divya Saxena, et al.

Spatio-temporal (ST) data for urban applications, such as taxi demand, traffic flow, regional rainfall is inherently stochastic and unpredictable. Recently, deep learning based ST prediction models are proposed to learn the ST characteristics of data. However, it is still very challenging (1) to adequately learn the complex and non-linear ST relationships; (2) to model the high variations in the ST data volumes as it is inherently dynamic, changing over time (i.e., irregular) and highly influenced by many external factors, such as adverse weather, accidents, traffic control, PoI, etc.; and (3) as there can be many complicated external factors that can affect the accuracy and it is impossible to list them explicitly. To handle the aforementioned issues, in this paper, we propose a novel deep generative adversarial network based model (named, D-GAN) for more accurate ST prediction by implicitly learning ST feature representations in an unsupervised manner. D-GAN adopts a GAN-based structure and jointly learns generation and variational inference of data. More specifically, D-GAN consists of two major parts: (1) a deep ST feature learning network to model the ST correlations and semantic variations, and underlying factors of variations and irregularity in the data through the implicit distribution modelling; (2) a fusion module to incorporate external factors for reaching a better inference. To the best our knowledge, no prior work studies ST prediction problem via deep implicit generative model and in an unsupervised manner. Extensive experiments performed on two real-world datasets show that D-GAN achieves more accurate results than traditional as well as deep learning based ST prediction methods.


page 1

page 2

page 3

page 4


A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction

In spite of its importance, passenger demand prediction is a highly chal...

Deep Markov Spatio-Temporal Factorization

We introduce deep Markov spatio-temporal factorization (DMSTF), a deep g...

Deep Generative Models for Geometric Design Under Uncertainty

Deep generative models have demonstrated effectiveness in learning compa...

Predicting Real-Time Locational Marginal Prices: A GAN-Based Video Prediction Approach

In this paper, we propose an unsupervised data-driven approach to predic...

AIST: An Interpretable Attention-based Deep Learning Model for Crime Prediction

Accuracy and interpretability are two essential properties for a crime p...

Modelling Urban Dynamics with Multi-Modal Graph Convolutional Networks

Modelling the dynamics of urban venues is a challenging task as it is mu...