Cycle-Consistent Adversarial Networks for Realistic Pervasive Change Generation in Remote Sensing Imagery

11/28/2019
by   Christopher X. Ren, et al.
0

This paper introduces a new method of generating realistic pervasive changes in the context of evaluating the effectiveness of change detection algorithms in controlled settings. The method, a cycle-consistent adversarial network (CycleGAN), requires low quantities of training data to generate realistic changes. Here we show an application of CycleGAN in creating realistic snow-covered scenes of multispectral Sentinel-2 imagery, and demonstrate how these images can be used as a test bed for anomalous change detection algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro