Cutaneous Feedback Interface for Teleoperated In-Hand Manipulation

03/06/2023
by   Yaonan Zhu, et al.
0

In-hand pivoting is one of the important manipulation skills that leverage robot grippers' extrinsic dexterity to perform repositioning tasks to compensate for environmental uncertainties and imprecise motion execution. Although many researchers have been trying to solve pivoting problems using mathematical modeling or learning-based approaches, the problems remain as open challenges. On the other hand, humans perform in-hand manipulation with remarkable precision and speed. Hence, the solution could be provided by making full use of this intrinsic human skill through dexterous teleoperation. For dexterous teleoperation to be successful, interfaces that enhance and complement haptic feedback are of great necessity. In this paper, we propose a cutaneous feedback interface that complements the somatosensory information humans rely on when performing dexterous skills. The interface is designed based on five-bar link mechanisms and provides two contact points in the index finger and thumb for cutaneous feedback. By integrating the interface with a commercially available haptic device, the system can display information such as grasping force, shear force, friction, and grasped object's pose. Passive pivoting tasks inside a numerical simulator Isaac Sim is conducted to evaluate the effect of the proposed cutaneous feedback interface.

READ FULL TEXT

page 1

page 2

page 4

page 5

research
08/21/2023

Dexterous Soft Hands Linearize Feedback-Control for In-Hand Manipulation

This paper presents a feedback-control framework for in-hand manipulatio...
research
09/10/2018

Multimodal feedback for active robot-object interaction

In this work, we present a multimodal system for active robot-object int...
research
08/07/2020

Physics-Based Dexterous Manipulations with Estimated Hand Poses and Residual Reinforcement Learning

Dexterous manipulation of objects in virtual environments with our bare ...
research
02/22/2022

Shape-Haptics: Planar Passive Force Feedback Mechanisms for Physical Interfaces

We present Shape-Haptics, an approach for designers to rapidly design an...
research
06/25/2022

Learning Preconditions of Hybrid Force-Velocity Controllers for Contact-Rich Manipulation

Robots need to manipulate objects in constrained environments like shelv...
research
05/11/2020

Polyrhythmic Bimanual Coordination Training using Haptic Force Feedback

It is challenging to develop two thoughts at the same time or perform tw...
research
01/27/2022

Surprisingly Robust In-Hand Manipulation: An Empirical Study

We present in-hand manipulation skills on a dexterous, compliant, anthro...

Please sign up or login with your details

Forgot password? Click here to reset