Curvature of Hypergraphs via Multi-Marginal Optimal Transport

03/22/2018
by   Shahab Asoodeh, et al.
0

We introduce a novel definition of curvature for hypergraphs, a natural generalization of graphs, by introducing a multi-marginal optimal transport problem for a naturally defined random walk on the hypergraph. This curvature, termed coarse scalar curvature, generalizes a recent definition of Ricci curvature for Markov chains on metric spaces by Ollivier [Journal of Functional Analysis 256 (2009) 810-864], and is related to the scalar curvature when the hypergraph arises naturally from a Riemannian manifold. We investigate basic properties of the coarse scalar curvature and obtain several bounds. Empirical experiments indicate that coarse scalar curvatures are capable of detecting "bridges" across connected components in hypergraphs, suggesting it is an appropriate generalization of curvature on simple graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset