Curricular Transfer Learning for Sentence Encoded Tasks

Fine-tuning language models in a downstream task is the standard approach for many state-of-the-art methodologies in the field of NLP. However, when the distribution between the source task and target task drifts, e.g., conversational environments, these gains tend to be diminished. This article proposes a sequence of pre-training steps (a curriculum) guided by "data hacking" and grammar analysis that allows further gradual adaptation between pre-training distributions. In our experiments, we acquire a considerable improvement from our method compared to other known pre-training approaches for the MultiWoZ task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro