CT synthesis from MR images for orthopedic applications in the lower arm using a conditional generative adversarial network

by   Frank Zijlstra, et al.

Purpose: To assess the feasibility of deep learning-based high resolution synthetic CT generation from MRI scans of the lower arm for orthopedic applications. Methods: A conditional Generative Adversarial Network was trained to synthesize CT images from multi-echo MR images. A training set of MRI and CT scans of 9 ex vivo lower arms was acquired and the CT images were registered to the MRI images. Three-fold cross-validation was applied to generate independent results for the entire dataset. The synthetic CT images were quantitatively evaluated with the mean absolute error metric, and Dice similarity and surface to surface distance on cortical bone segmentations. Results: The mean absolute error was 63.5 HU on the overall tissue volume and 144.2 HU on the cortical bone. The mean Dice similarity of the cortical bone segmentations was 0.86. The average surface to surface distance between bone on real and synthetic CT was 0.48 mm. Qualitatively, the synthetic CT images corresponded well with the real CT scans and partially maintained high resolution structures in the trabecular bone. The bone segmentations on synthetic CT images showed some false positives on tendons, but the general shape of the bone was accurately reconstructed. Conclusions: This study demonstrates that high quality synthetic CT can be generated from MRI scans of the lower arm. The good correspondence of the bone segmentations demonstrates that synthetic CT could be competitive with real CT in applications that depend on such segmentations, such as planning of orthopedic surgery and 3D printing.


page 3

page 4

page 5


Adipose Tissue Segmentation in Unlabeled Abdomen MRI using Cross Modality Domain Adaptation

Abdominal fat quantification is critical since multiple vital organs are...

Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy

To enable magnetic resonance (MR)-only radiotherapy and facilitate model...

Synthetic CT Generation from MRI using 3D Transformer-based Denoising Diffusion Model

Magnetic resonance imaging (MRI)-based synthetic computed tomography (sC...

Exploring contrast generalisation in deep learning-based brain MRI-to-CT synthesis

Background: Synthetic computed tomography (sCT) has been proposed and in...

SkullGAN: Synthetic Skull CT Generation with Generative Adversarial Networks

Deep learning offers potential for various healthcare applications invol...

Multitask 3D CBCT-to-CT Translation and Organs-at-Risk Segmentation Using Physics-Based Data Augmentation

Purpose: In current clinical practice, noisy and artifact-ridden weekly ...

Automatic Online Quality Control of Synthetic CTs

Accurate MR-to-CT synthesis is a requirement for MR-only workflows in ra...

Please sign up or login with your details

Forgot password? Click here to reset