CSPM: A Contrastive Spatiotemporal Preference Model for CTR Prediction in On-Demand Food Delivery Services
Click-through rate (CTR) prediction is a crucial task in the context of an online on-demand food delivery (OFD) platform for precisely estimating the probability of a user clicking on food items. Unlike universal e-commerce platforms such as Taobao and Amazon, user behaviors and interests on the OFD platform are more location and time-sensitive due to limited delivery ranges and regional commodity supplies. However, existing CTR prediction algorithms in OFD scenarios concentrate on capturing interest from historical behavior sequences, which fails to effectively model the complex spatiotemporal information within features, leading to poor performance. To address this challenge, this paper introduces the Contrastive Sres under different search states using three modules: contrastive spatiotemporal representation learning (CSRL), spatiotemporal preference extractor (StPE), and spatiotemporal information filter (StIF). CSRL utilizes a contrastive learning framework to generate a spatiotemporal activation representation (SAR) for the search action. StPE employs SAR to activate users' diverse preferences related to location and time from the historical behavior sequence field, using a multi-head attention mechanism. StIF incorporates SAR into a gating network to automatically capture important features with latent spatiotemporal effects. Extensive experiments conducted on two large-scale industrial datasets demonstrate the state-of-the-art performance of CSPM. Notably, CSPM has been successfully deployed in Alibaba's online OFD platform Ele.me, resulting in a significant 0.88
READ FULL TEXT