CryptoGCN: Fast and Scalable Homomorphically Encrypted Graph Convolutional Network Inference

09/24/2022
by   Ran Ran, et al.
11

Recently cloud-based graph convolutional network (GCN) has demonstrated great success and potential in many privacy-sensitive applications such as personal healthcare and financial systems. Despite its high inference accuracy and performance on cloud, maintaining data privacy in GCN inference, which is of paramount importance to these practical applications, remains largely unexplored. In this paper, we take an initial attempt towards this and develop CryptoGCN–a homomorphic encryption (HE) based GCN inference framework. A key to the success of our approach is to reduce the tremendous computational overhead for HE operations, which can be orders of magnitude higher than its counterparts in the plaintext space. To this end, we develop an approach that can effectively take advantage of the sparsity of matrix operations in GCN inference to significantly reduce the computational overhead. Specifically, we propose a novel AMA data formatting method and associated spatial convolution methods, which can exploit the complex graph structure and perform efficient matrix-matrix multiplication in HE computation and thus greatly reduce the HE operations. We also develop a co-optimization framework that can explore the trade offs among the accuracy, security level, and computational overhead by judicious pruning and polynomial approximation of activation module in GCNs. Based on the NTU-XVIEW skeleton joint dataset, i.e., the largest dataset evaluated homomorphically by far as we are aware of, our experimental results demonstrate that CryptoGCN outperforms state-of-the-art solutions in terms of the latency and number of homomorphic operations, i.e., achieving as much as a 3.10× speedup on latency and reduces the total Homomorphic Operation Count by 77.4% with a small accuracy loss of 1-1.5%.

READ FULL TEXT
research
10/15/2020

Bi-GCN: Binary Graph Convolutional Network

Graph Neural Networks (GNNs) have achieved tremendous success in graph r...
research
05/30/2023

High-Performance Inference Graph Convolutional Networks for Skeleton-Based Action Recognition

Recently, significant achievements have been made in skeleton-based huma...
research
03/27/2019

Batched Sparse Matrix Multiplication for Accelerating Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are recently getting much attention ...
research
07/07/2022

HE-PEx: Efficient Machine Learning under Homomorphic Encryption using Pruning, Permutation and Expansion

Privacy-preserving neural network (NN) inference solutions have recently...
research
10/28/2018

Accurate, Efficient and Scalable Graph Embedding

The Graph Convolutional Network (GCN) model and its variants are powerfu...
research
02/24/2020

Adaptive Propagation Graph Convolutional Network

Graph convolutional networks (GCNs) are a family of neural network model...
research
01/29/2021

General-Purpose OCR Paragraph Identification by Graph Convolutional Neural Networks

Paragraphs are an important class of document entities. We propose a new...

Please sign up or login with your details

Forgot password? Click here to reset