Crowd-sourcing NLG Data: Pictures Elicit Better Data

08/01/2016
by   Jekaterina Novikova, et al.
0

Recent advances in corpus-based Natural Language Generation (NLG) hold the promise of being easily portable across domains, but require costly training data, consisting of meaning representations (MRs) paired with Natural Language (NL) utterances. In this work, we propose a novel framework for crowdsourcing high quality NLG training data, using automatic quality control measures and evaluating different MRs with which to elicit data. We show that pictorial MRs result in better NL data being collected than logic-based MRs: utterances elicited by pictorial MRs are judged as significantly more natural, more informative, and better phrased, with a significant increase in average quality ratings (around 0.5 points on a 6-point scale), compared to using the logical MRs. As the MR becomes more complex, the benefits of pictorial stimuli increase. The collected data will be released as part of this submission.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset