Cross-type Biomedical Named Entity Recognition with Deep Multi-Task Learning
Motivation: Biomedical named entity recognition (BioNER) is the most fundamental task in biomedical text mining. State-of-the-art BioNER systems often require handcrafted features specifically designed for each type of biomedical entities. This feature generation process requires intensive labors from biomedical and linguistic experts, and makes it difficult to adapt these systems to new biomedical entity types. Although recent studies explored using neural network models for BioNER to free experts from manual feature generation, these models still require substantial human efforts to annotate massive training data. Results: We propose a multi-task learning framework for BioNER that is based on neural network models to save human efforts. We build a global model by collectively training multiple models that share parameters, each model capturing the characteristics of a different biomedical entity type. In experiments on five BioNER benchmark datasets covering four major biomedical entity types, our model outperforms state-of-the-art systems and other neural network models by a large margin, even when only limited training data are available. Further analysis shows that the large performance gains come from sharing character- and word-level information between different biomedical entities. The approach creates new opportunities for text-mining approaches to help biomedical scientists better exploit knowledge in biomedical literature.
READ FULL TEXT