Cross-topic Argument Mining from Heterogeneous Sources Using Attention-based Neural Networks

02/15/2018
by   Christian Stab, et al.
0

Argument mining is a core technology for automating argument search in large document collections. Despite its usefulness for this task, most current approaches to argument mining are designed for use only with specific text types and fall short when applied to heterogeneous texts. In this paper, we propose a new sentential annotation scheme that is reliably applicable by crowd workers to arbitrary Web texts. We source annotations for over 25,000 instances covering eight controversial topics. The results of cross-topic experiments show that our attention-based neural network generalizes best to unseen topics and outperforms vanilla BiLSTM models by 6

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset