Cross-modality Person re-identification with Shared-Specific Feature Transfer

02/28/2020
by   Yan Lu, et al.
11

Cross-modality person re-identification (cm-ReID) is a challenging but key technology for intelligent video analysis. Existing works mainly focus on learning common representation by embedding different modalities into a same feature space. However, only learning the common characteristics means great information loss, lowering the upper bound of feature distinctiveness. In this paper, we tackle the above limitation by proposing a novel cross-modality shared-specific feature transfer algorithm (termed cm-SSFT) to explore the potential of both the modality-shared information and the modality-specific characteristics to boost the re-identification performance. We model the affinities of different modality samples according to the shared features and then transfer both shared and specific features among and across modalities. We also propose a complementary feature learning strategy including modality adaption, project adversarial learning and reconstruction enhancement to learn discriminative and complementary shared and specific features of each modality, respectively. The entire cm-SSFT algorithm can be trained in an end-to-end manner. We conducted comprehensive experiments to validate the superiority of the overall algorithm and the effectiveness of each component. The proposed algorithm significantly outperforms state-of-the-arts by 22.5 the two mainstream benchmark datasets SYSU-MM01 and RegDB, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro