Cross-media Similarity Metric Learning with Unified Deep Networks
As a highlighting research topic in the multimedia area, cross-media retrieval aims to capture the complex correlations among multiple media types. Learning better shared representation and distance metric for multimedia data is important to boost the cross-media retrieval. Motivated by the strong ability of deep neural network in feature representation and comparison functions learning, we propose the Unified Network for Cross-media Similarity Metric (UNCSM) to associate cross-media shared representation learning with distance metric in a unified framework. First, we design a two-pathway deep network pretrained with contrastive loss, and employ double triplet similarity loss for fine-tuning to learn the shared representation for each media type by modeling the relative semantic similarity. Second, the metric network is designed for effectively calculating the cross-media similarity of the shared representation, by modeling the pairwise similar and dissimilar constraints. Compared to the existing methods which mostly ignore the dissimilar constraints and only use sample distance metric as Euclidean distance separately, our UNCSM approach unifies the representation learning and distance metric to preserve the relative similarity as well as embrace more complex similarity functions for further improving the cross-media retrieval accuracy. The experimental results show that our UNCSM approach outperforms 8 state-of-the-art methods on 4 widely-used cross-media datasets.
READ FULL TEXT