Cross-label Suppression: A Discriminative and Fast Dictionary Learning with Group Regularization
This paper addresses image classification through learning a compact and discriminative dictionary efficiently. Given a structured dictionary with each atom (columns in the dictionary matrix) related to some label, we propose cross-label suppression constraint to enlarge the difference among representations for different classes. Meanwhile, we introduce group regularization to enforce representations to preserve label properties of original samples, meaning the representations for the same class are encouraged to be similar. Upon the cross-label suppression, we don't resort to frequently-used ℓ_0-norm or ℓ_1-norm for coding, and obtain computational efficiency without losing the discriminative power for categorization. Moreover, two simple classification schemes are also developed to take full advantage of the learnt dictionary. Extensive experiments on six data sets including face recognition, object categorization, scene classification, texture recognition and sport action categorization are conducted, and the results show that the proposed approach can outperform lots of recently presented dictionary algorithms on both recognition accuracy and computational efficiency.
READ FULL TEXT