Cross-Entropic Learning of a Machine for the Decision in a Partially Observable Universe

05/18/2006
by   Frederic Dambreville, et al.
0

Revision of the paper previously entitled "Learning a Machine for the Decision in a Partially Observable Markov Universe" In this paper, we are interested in optimal decisions in a partially observable universe. Our approach is to directly approximate an optimal strategic tree depending on the observation. This approximation is made by means of a parameterized probabilistic law. A particular family of hidden Markov models, with input and output, is considered as a model of policy. A method for optimizing the parameters of these HMMs is proposed and applied. This optimization is based on the cross-entropic principle for rare events simulation developed by Rubinstein.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro