Cross-domain Human Parsing via Adversarial Feature and Label Adaptation

01/04/2018
by   Si Liu, et al.
0

Human parsing has been extensively studied recently due to its wide applications in many important scenarios. Mainstream fashion parsing models focus on parsing the high-resolution and clean images. However, directly applying the parsers trained on benchmarks to a particular application scenario in the wild, e.g., a canteen, airport or workplace, often gives non-satisfactory performance due to domain shift. In this paper, we explore a new and challenging cross-domain human parsing problem: taking the benchmark dataset with extensive pixel-wise labeling as the source domain, how to obtain a satisfactory parser on a new target domain without requiring any additional manual labeling? To this end, we propose a novel and efficient cross-domain human parsing model to bridge the cross-domain differences in terms of visual appearance and environment conditions and fully exploit commonalities across domains. Our proposed model explicitly learns a feature compensation network, which is specialized for mitigating the cross-domain differences. A discriminative feature adversarial network is introduced to supervise the feature compensation to effectively reduce the discrepancy between feature distributions of two domains. Besides, our model also introduces a structured label adversarial network to guide the parsing results of the target domain to follow the high-order relationships of the structured labels shared across domains. The proposed framework is end-to-end trainable, practical and scalable in real applications. Extensive experiments are conducted where LIP dataset is the source domain and 4 different datasets including surveillance videos, movies and runway shows are evaluated as target domains. The results consistently confirm data efficiency and performance advantages of the proposed method for the cross-domain human parsing problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset