Cross Domain Few-Shot Learning via Meta Adversarial Training

02/11/2022
by   Jirui Qi, et al.
0

Few-shot relation classification (RC) is one of the critical problems in machine learning. Current research merely focuses on the set-ups that both training and testing are from the same domain. However, in practice, this assumption is not always guaranteed. In this study, we present a novel model that takes into consideration the afore-mentioned cross-domain situation. Not like previous models, we only use the source domain data to train the prototypical networks and test the model on target domain data. A meta-based adversarial training framework (MBATF) is proposed to fine-tune the trained networks for adapting to data from the target domain. Empirical studies confirm the effectiveness of the proposed model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset