Critical Thinking for Language Models

09/15/2020 ∙ by Gregor Betz, et al. ∙ 0

This paper takes a first step towards a critical thinking curriculum for neural auto-regressive language models. We introduce a synthetic text corpus of deductively valid arguments, and use this artificial argument corpus to train and evaluate GPT-2. Significant transfer learning effects can be observed: Training a model on a few simple core schemes allows it to accurately complete conclusions of different, and more complex types of arguments, too. The language models seem to connect and generalize the core argument schemes in a correct way. Moreover, we obtain consistent and promising results for the GLUE and SNLI benchmarks. The findings suggest that there might exist a representative sample of paradigmatic instances of good reasoning that will suffice to acquire general reasoning skills and that might form the core of a critical thinking curriculum for language models.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 4

page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.