Credit Assignment in Adaptive Evolutionary Algorithms
In this paper, a new method for assigning credit to search operators is presented. Starting with the principle of optimizing search bias, search operators are selected based on an ability to create solutions that are historically linked to future generations. Using a novel framework for defining performance measurements, distributing credit for performance, and the statistical interpretation of this credit, a new adaptive method is developed and shown to outperform a variety of adaptive and non-adaptive competitors.
READ FULL TEXT