Creating High Resolution Images with a Latent Adversarial Generator
Generating realistic images is difficult, and many formulations for this task have been proposed recently. If we restrict the task to that of generating a particular class of images, however, the task becomes more tractable. That is to say, instead of generating an arbitrary image as a sample from the manifold of natural images, we propose to sample images from a particular "subspace" of natural images, directed by a low-resolution image from the same subspace. The problem we address, while close to the formulation of the single-image super-resolution problem, is in fact rather different. Single image super-resolution is the task of predicting the image closest to the ground truth from a relatively low resolution image. We propose to produce samples of high resolution images given extremely small inputs with a new method called Latent Adversarial Generator (LAG). In our generative sampling framework, we only use the input (possibly of very low-resolution) to direct what class of samples the network should produce. As such, the output of our algorithm is not a unique image that relates to the input, but rather a possible se of related images sampled from the manifold of natural images. Our method learns exclusively in the latent space of the adversary using perceptual loss – it does not have a pixel loss.
READ FULL TEXT