COVID-19 Pandemic Outbreak in the Subcontinent: A data-driven analysis

08/22/2020 ∙ by Bikash Chandra Singh, et al. ∙ 0

Human civilization is experiencing a critical situation that presents itself for a new coronavirus disease 2019 (COVID-19). This virus emerged in late December 2019 in Wuhan city, Hubei, China. The grim fact of COVID-19 is, it is highly contagious in nature, therefore, spreads rapidly all over the world and causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Responding to the severity of COVID-19 research community directs the attention to the analysis of COVID-19, to diminish its antagonistic impact towards society. Numerous studies claim that the subcontinent, i.e., Bangladesh, India, and Pakistan, could remain in the worst affected region by the COVID-19. In order to prevent the spread of COVID-19, it is important to predict the trend of COVID-19 beforehand the planning of effective control strategies. Fundamentally, the idea is to dependably estimate the reproduction number to judge the spread rate of COVID-19 in a particular region. Consequently, this paper uses publicly available epidemiological data of Bangladesh, India, and Pakistan to estimate the reproduction numbers. More specifically, we use various models (for example, susceptible infection recovery (SIR), exponential growth (EG), sequential Bayesian (SB), maximum likelihood (ML) and time dependent (TD)) to estimate the reproduction numbers and observe the model fitness in the corresponding data set. Experimental results show that the reproduction numbers produced by these models are greater than 1.2 (approximately) indicates that COVID-19 is gradually spreading in the subcontinent.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.