COVID-19 Literature Mining and Retrieval using Text Mining Approaches
The novel coronavirus disease (COVID-19) began in Wuhan, China, in late 2019 and to date has infected over 148M people worldwide, resulting in 3.12M deaths. On March 10, 2020, the World Health Organisation (WHO) declared it as a global pandemic. Many academicians and researchers started to publish papers describing the latest discoveries on covid-19. The large influx of publications made it hard for other researchers to go through a large amount of data and find the appropriate one that helps their research. So, the proposed model attempts to extract relavent titles from the large corpus of research publications which makes the job easy for the researchers. Allen Institute for AI released the CORD-19 dataset, which consists of 2,00,000 journal articles related to coronavirus-related research publications from PubMed's PMC, WHO (World Health Organization), bioRxiv, and medRxiv pre-prints. Along with this document corpus, they have also provided a topics dataset named topics-rnd3 consisting of a list of topics. Each topic has three types of representations like query, question, and narrative. These Datasets are made open for research, and also they released a TREC-COVID competition on Kaggle. Using these topics like queries, our goal is to find out the relevant documents in the CORD-19 dataset. In this research, relevant documents should be recognized for the posed topics in topics-rnd3 data set. The proposed model uses Natural Language Processing(NLP) techniques like Bag-of-Words, Average Word-2-Vec, Average BERT Base model and Tf-Idf weighted Word2Vec model to fabricate vectors for query, question, narrative, and combinations of them. Similarly, fabricate vectors for titles in the CORD-19 dataset. After fabricating vectors, cosine similarity is used for finding similarities between every two vectors. Cosine similarity helps us to find relevant documents for the given topic.
READ FULL TEXT