COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal Understanding of the Pandemic with Social Media Conversations

by   Shayan Fazeli, et al.

COVID-19 has been devastating the world since the end of 2019 and has continued to play a significant role in major national and worldwide events, and consequently, the news. In its wake, it has left no life unaffected. Having earned the world's attention, social media platforms have served as a vehicle for the global conversation about COVID-19. In particular, many people have used these sites in order to express their feelings, experiences, and observations about the pandemic. We provide a multi-faceted analysis of critical properties exhibited by these conversations on social media regarding the novel coronavirus pandemic. We present a framework for analysis, mining, and tracking the critical content and characteristics of social media conversations around the pandemic. Focusing on Twitter and Reddit, we have gathered a large-scale dataset on COVID-19 social media conversations. Our analyses cover tracking potential reports on virus acquisition, symptoms, conversation topics, and language complexity measures through time and by region across the United States. We also present a BERT-based model for recognizing instances of hateful tweets in COVID-19 conversations, which achieves a lower error-rate than the state-of-the-art performance. Our results provide empirical validation for the effectiveness of our proposed framework and further demonstrate that social media data can be efficiently leveraged to provide public health experts with inexpensive but thorough insight over the course of an outbreak.



There are no comments yet.


page 1


Tracking the evolution of crisis processes and mental health on social media during the COVID-19 pandemic

The COVID-19 pandemic has affected all aspects of society, not only brin...

Critical Impact of Social Networks Infodemic on Defeating Coronavirus COVID-19 Pandemic: Twitter-Based Study and Research Directions

News creation and consumption has been changing since the advent of soci...

Depressive, Drug Abusive, or Informative: Knowledge-aware Study of News Exposure during COVID-19 Outbreak

The COVID-19 pandemic is having a serious adverse impact on the lives of...

Identifying Structures in Social Conversations in NSCLC Patients through the Semi-Automatic extraction of Topical Taxonomies

The exploration of social conversations for addressing patient's needs i...

Conspiracy in the Time of Corona: Automatic detection of Covid-19 Conspiracy Theories in Social Media and the News

Rumors and conspiracy theories thrive in environments of low confidence ...

Automatic Monitoring Social Dynamics During Big Incidences: A Case Study of COVID-19 in Bangladesh

Newspapers are trustworthy media where people get the most reliable and ...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.