Covert Millimeter-Wave Communication: Design Strategies and Performance Analysis

by   Mohammad Vahid Jamali, et al.

In this paper, we investigate covert communication over millimeter-wave (mmWave) frequencies. In particular, a mmWave transmitter Alice attempts to reliably communicate to a receiver Bob while hiding the existence of communication from a warden Willie. In this regard, operating over mmWave bands not only increases the covertness thanks to directional beams, but also increases the transmission data rates given much more available bandwidths and enables ultra-low form factor transceivers due to the lower wavelengths used compared to the conventional radio frequency (RF) counterpart. We first assume that the transmitter Alice employs two independent antenna arrays in which one of the arrays is to form a directive beam for data transmission to Bob. The other antenna array is used by Alice to generate another beam toward Willie as a jamming signal while changing the transmit power independently across the transmission blocks. For this dual-beam setup, we characterize Willie's detection error rate with the optimal detector and the closed-form of its expected value from Alice's perspective. We then derive the closed-form expression for the outage probability of the Alice-Bob link, which enables characterizing the optimal covert rate that can be achieved using the proposed setup. We further obtain tractable forms for the ergodic capacity of the Alice-Bob link involving only one-dimensional integrals that can be computed in closed forms for most ranges of the channel parameters. Finally, we highlight how the results can be extended to more practical scenarios, particularly to cases where perfect information about the location of the passive warden is not available. Our results demonstrate the advantages of covert mmWave communication compared to the RF counterpart. The research in this paper is the first analytical attempt in exploring covert communication using mmWave systems.


Covert Millimeter-Wave Communication via a Dual-Beam Transmitter

In this paper, we investigate covert communication over millimeter-wave ...

Joint Beam Training and Data Transmission Design for Covert Millimeter-Wave Communication

Covert communication prevents legitimate transmission from being detecte...

Performance Analysis of Millimeter Wave Wireless Power Transfer With Imperfect Beam Alignment

In this paper, the impact of imperfect beam alignment (IBA) on millimete...

Uplink Channel Estimation and Data Transmission in Millimeter-Wave CRAN with Lens Antenna Arrays

Millimeter-wave (mmWave) communication and network densification hold gr...

Study of Realistic Antenna Patterns in 5G mmWave Cellular Scenarios

Large antenna arrays and millimeter-wave (mmWave) frequencies have been ...

Reconfigurable Intelligent Surface Optimal Placement in Millimeter-Wave Networks

This work discusses the optimal placement of a reconfigurable intelligen...

Leveraging mm-Wave Communication for Security

The fact that Millimeter Wave (mmWave) communication needs to be directi...

Please sign up or login with your details

Forgot password? Click here to reset