Coverage Analysis of LEO Satellite Downlink Networks: Orbit Geometry Dependent Approach
The low-earth-orbit (LEO) satellite network with mega-constellations can provide global coverage while supporting the high-data rates. The coverage performance of such a network is highly dependent on orbit geometry parameters, including satellite altitude and inclination angle. Traditionally, simulation-based coverage analysis dominates because of the lack of analytical approaches. This paper presents a novel systematic analysis framework for the LEO satellite network by highlighting orbit geometric parameters. Specifically, we assume that satellite locations are placed on a circular orbit according to a one-dimensional Poisson point process. Then, we derive the distribution of the nearest distance between the satellite and a fixed user's location on the Earth in terms of the orbit-geometry parameters. Leveraging this distribution, we characterize the coverage probability of the single-orbit LEO network as a function of the network geometric parameters in conjunction with small and large-scale fading effects. Finally, we extend our coverage analysis to multi-orbit networks and verify the synergistic gain of harnessing multi-orbit satellite networks in terms of the coverage probability. Simulation results are provided to validate the mathematical derivations and the accuracy of the proposed model.
READ FULL TEXT