Course-Prerequisite Networks for Analyzing and Understanding Academic Curricula

10/03/2022
by   Pavlos Stavrinides, et al.
0

Understanding a complex system of relationships between courses is of great importance for the university's educational mission. This paper is dedicated to the study of course-prerequisite networks that model interactions between courses, represent the flow of knowledge in academic curricula, and serve as a key tool for visualizing, analyzing, and optimizing complex curricula. We show how course-prerequisite networks can be used by students, faculty, and administrators for detecting important courses, improving existing and creating new courses, navigating complex curricula, allocating teaching resources, increasing interdisciplinary interactions between departments, revamping curricula, and enhancing the overall students' learning experience. The proposed methodology is illustrated with a network of courses taught at the California Institute of Technology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro