Counting Polynomial Roots in Isabelle/HOL: A Formal Proof of the Budan-Fourier Theorem

11/27/2018
by   Wenda Li, et al.
0

Many problems in computer algebra and numerical analysis can be reduced to counting or approximating the real roots of a polynomial within an interval. Existing verified root-counting procedures in major proof assistants are mainly based on the classical Sturm theorem, which only counts distinct roots. In this paper, we have strengthened the root-counting ability in Isabelle/HOL by first formally proving the Budan-Fourier theorem. Subsequently, based on Descartes' rule of signs and Taylor shift, we have provided a verified procedure to efficiently over-approximate the number of real roots within an interval, counting multiplicity. For counting multiple roots exactly, we have extended our previous formalisation of Sturm's theorem. Finally, we combine verified components in the developments above to improve our previous certified complex-root-counting procedures based on Cauchy indices. We believe those verified routines will be crucial for certifying programs and building tactics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset