Counting Homomorphisms to K_4-minor-free Graphs, modulo 2

06/30/2020
by   Jacob Focke, et al.
0

We study the problem of computing the parity of the number of homomorphisms from an input graph G to a fixed graph H. Faben and Jerrum [ToC'15] introduced an explicit criterion on the graph H and conjectured that, if satisfied, the problem is solvable in polynomial time and, otherwise, the problem is complete for the complexity class ⊕P of parity problems. We verify their conjecture for all graphs H that exclude the complete graph on 4 vertices as a minor. Further, we rule out the existence of a subexponential-time algorithm for the ⊕P-complete cases, assuming the randomised Exponential Time Hypothesis. Our proofs introduce a novel method of deriving hardness from globally defined substructures of the fixed graph H. Using this, we subsume all prior progress towards resolving the conjecture (Faben and Jerrum [ToC'15]; Göbel, Goldberg and Richerby [ToCT'14,'16]). As special cases, our machinery also yields a proof of the conjecture for graphs with maximum degree at most 3, as well as a full classification for the problem of counting list homomorphisms, modulo 2.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro