Countering Eavesdroppers with Meta-learning-based Cooperative Ambient Backscatter Communications

08/04/2023
by   Nam H. Chu, et al.
0

This article introduces a novel lightweight framework using ambient backscattering communications to counter eavesdroppers. In particular, our framework divides an original message into two parts: (i) the active-transmit message transmitted by the transmitter using conventional RF signals and (ii) the backscatter message transmitted by an ambient backscatter tag that backscatters upon the active signals emitted by the transmitter. Notably, the backscatter tag does not generate its own signal, making it difficult for an eavesdropper to detect the backscattered signals unless they have prior knowledge of the system. Here, we assume that without decoding/knowing the backscatter message, the eavesdropper is unable to decode the original message. Even in scenarios where the eavesdropper can capture both messages, reconstructing the original message is a complex task without understanding the intricacies of the message-splitting mechanism. A challenge in our proposed framework is to effectively decode the backscattered signals at the receiver, often accomplished using the maximum likelihood (MLK) approach. However, such a method may require a complex mathematical model together with perfect channel state information (CSI). To address this issue, we develop a novel deep meta-learning-based signal detector that can not only effectively decode the weak backscattered signals without requiring perfect CSI but also quickly adapt to a new wireless environment with very little knowledge. Simulation results show that our proposed learning approach, without requiring perfect CSI and complex mathematical model, can achieve a bit error ratio close to that of the MLK-based approach. They also clearly show the efficiency of the proposed approach in dealing with eavesdropping attacks and the lack of training data for deep learning models in practical scenarios.

READ FULL TEXT

page 7

page 14

research
01/17/2022

A Novel Covert Communication Method using Ambient Backscatter Communications

This paper introduces a novel solution to enable covert communication in...
research
05/04/2021

Defeating Super-Reactive Jammers With Deception Strategy: Modeling, Signal Detection, and Performance Analysis

This paper develops a novel framework to defeat a super-reactive jammer,...
research
11/10/2020

Deep Transfer Learning-Assisted Signal Detection for Ambient Backscatter Communications

Existing tag signal detection algorithms inevitably suffer from a high b...
research
09/11/2020

Deep Transfer Learning for Signal Detection in Ambient Backscatter Communications

Tag signal detection is one of the key tasks in ambient backscatter comm...
research
05/13/2020

DeepFake: Deep Dueling-based Deception Strategy to Defeat Reactive Jammers

In this paper, we introduce DeepFake, a novel deep reinforcement learnin...
research
02/13/2020

Harvesting Ambient RF for Presence Detection Through Deep Learning

This paper explores the use of ambient radio frequency (RF) signals for ...
research
09/25/2021

Channel State Information Based Localization with Deep Learning

Localization is one of the most important problems in various fields suc...

Please sign up or login with your details

Forgot password? Click here to reset