Counterfactually Fair Regression with Double Machine Learning

03/21/2023
by   Patrick Rehill, et al.
0

Counterfactual fairness is an approach to AI fairness that tries to make decisions based on the outcomes that an individual with some kind of sensitive status would have had without this status. This paper proposes Double Machine Learning (DML) Fairness which analogises this problem of counterfactual fairness in regression problems to that of estimating counterfactual outcomes in causal inference under the Potential Outcomes framework. It uses arbitrary machine learning methods to partial out the effect of sensitive variables on nonsensitive variables and outcomes. Assuming that the effects of the two sets of variables are additively separable, outcomes will be approximately equalised and individual-level outcomes will be counterfactually fair. This paper demonstrates the approach in a simulation study pertaining to discrimination in workplace hiring and an application on real data estimating the GPAs of law school students. It then discusses when it is appropriate to apply such a method to problems of real-world discrimination where constructs are conceptually complex and finally, whether DML Fairness can achieve justice in these settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro