Corruption Robust Active Learning

06/21/2021
by   Yifang Chen, et al.
0

We conduct theoretical studies on streaming-based active learning for binary classification under unknown adversarial label corruptions. In this setting, every time before the learner observes a sample, the adversary decides whether to corrupt the label or not. First, we show that, in a benign corruption setting (which includes the misspecification setting as a special case), with a slight enlargement on the hypothesis elimination threshold, the classical RobustCAL framework can (surprisingly) achieve nearly the same label complexity guarantee as in the non-corrupted setting. However, this algorithm can fail in the general corruption setting. To resolve this drawback, we propose a new algorithm which is provably correct without any assumptions on the presence of corruptions. Furthermore, this algorithm enjoys the minimax label complexity in the non-corrupted setting (which is achieved by RobustCAL) and only requires 𝒪̃(C_total) additional labels in the corrupted setting to achieve 𝒪(ε + C_total/n), where ε is the target accuracy, C_total is the total number of corruptions and n is the total number of unlabeled samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro