Correcting Automated and Manual Speech Transcription Errors using Warped Language Models

03/26/2021 ∙ by Mahdi Namazifar, et al. ∙ 0

Masked language models have revolutionized natural language processing systems in the past few years. A recently introduced generalization of masked language models called warped language models are trained to be more robust to the types of errors that appear in automatic or manual transcriptions of spoken language by exposing the language model to the same types of errors during training. In this work we propose a novel approach that takes advantage of the robustness of warped language models to transcription noise for correcting transcriptions of spoken language. We show that our proposed approach is able to achieve up to 10 transcriptions of spoken language.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.