CornerNet: Detecting Objects as Paired Keypoints

08/03/2018
by   Hei Law, et al.
6

We propose CornerNet, a new approach to object detection where we detect an object bounding box as a pair of keypoints, the top-left corner and the bottom-right corner, using a single convolution neural network. By detecting objects as paired keypoints, we eliminate the need for designing a set of anchor boxes commonly used in prior single-stage detectors. In addition to our novel formulation, we introduce corner pooling, a new type of pooling layer that helps the network better localize corners. Experiments show that CornerNet achieves a 42.1

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset