Core-based Trend Detection in Blockchain Networks
Blockchains are now significantly easing trade finance, with billions of dollars worth of assets being transacted daily. However, analyzing these networks remains challenging due to the large size and complexity of the data. We introduce a scalable approach called "InnerCore" for identifying key actors in blockchain-based networks and providing a sentiment indicator for the networks using data depth-based core decomposition and centered-motif discovery. InnerCore is a computationally efficient, unsupervised approach suitable for analyzing large temporal graphs. We demonstrate its effectiveness through case studies on the recent collapse of LunaTerra and the Proof-of-Stake (PoS) switch of Ethereum, using external ground truth collected by a leading blockchain analysis company. Our experiments show that InnerCore can match the qualified analysis accurately without human involvement, automating blockchain analysis and its trend detection in a scalable manner.
READ FULL TEXT