Coping with Byzantine Processes and a Message Adversary: Modularity Helps!

04/28/2022
by   Davide Frey, et al.
0

This paper explores how reliable broadcast can be implemented when facing a dual adversary that can both corrupt processes and remove messages.More precisely, we consider an asynchronous n-process message-passing systems in which up to t_b processes are Byzantine and where, at the network level, for each message broadcast by a correct process, an adversary can prevent up to t_m processes from receiving it (the integer t_m defines the power of the message adversary).So, differently from previous works, this work considers that not only computing entities can be faulty (Byzantine processes), but also that the network can lose messages.To this end, the paper first introduces a new basic communication abstraction denoted kℓ-cast, and studies its properties in this new bi-dimensional adversary context.Then, the paper deconstructs existing Byzantine-tolerant asynchronous broadcast algorithms and, with the help of the kℓ-cast communication abstraction, reconstructs versions of them that tolerate both Byzantine processes and message adversaries.Interestingly, these reconstructed algorithms are also more efficient than the Byzantine-tolerant-only algorithms from which they originate.The paper also shows that the condition n>3t_b+2t_m is necessary and sufficient (with signatures) to design such reliable broadcast algorithms.

READ FULL TEXT

page 15

page 40

research
05/20/2022

Asynchronous Byzantine Reliable Broadcast With a Message Adversary

This paper considers the problem of reliable broadcast in asynchronous a...
research
03/21/2019

Multi-hop Byzantine Reliable Broadcast Made Practical

We revisit Byzantine tolerant reliable broadcast algorithms in multi-hop...
research
06/18/2020

Money Transfer Made Simple

It has recently been shown (PODC 2019) that, contrarily to a common beli...
research
05/21/2021

Classifying Trusted Hardware via Unidirectional Communication

It is well known that Byzantine fault tolerant (BFT) consensus cannot be...
research
11/30/2020

Survey on Parameterized Verification with Threshold Automata and the Byzantine Model Checker

Threshold guards are a basic primitive of many fault-tolerant algorithms...
research
07/03/2018

RT-ByzCast: Byzantine-Resilient Real-Time Reliable Broadcast

Today's cyber-physical systems face various impediments to achieving the...
research
06/07/2023

Dynamic Probabilistic Reliable Broadcast

Byzantine reliable broadcast is a primitive that allows a set of process...

Please sign up or login with your details

Forgot password? Click here to reset