Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in a Massive IoT Network under Rayleigh Fading

05/01/2022
by   Onel L. A. López, et al.
0

Grant-free protocols exploiting compressed sensing (CS) multi-user detection (MUD) are appealing for solving the random access problem in massive machine-type communications (mMTC) with sporadic device activity. Such protocols would greatly benefit from a prior deterministic knowledge of the sparsity level, i.e., instantaneous number of simultaneously active devices K. Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPT) over a short phase at the beginning of the transmission block for detecting K in mMTC scenarios under Rayleigh fading. CPT can be implemented either as: i) U-CPT, which exploits only uplink transmissions, or A-CPT, which includes also downlink transmissions for channel state information (CSI) acquisition that resolve fading uncertainty. We discuss two specific implementations of A-CPT: ii) A-CPT-F, which implements CSI-based phase corrections while leveraging the same statistical inverse power control used by U-CPT, and iii) A-CPT-D, which implements a dynamic CSI-based inverse power control, although it requires some active devices to remain in silence if their corresponding channels are too faded. We derive a signal sparsity level detector for each CPT mechanism by relaxing the original integer detection/classification problem to an estimation problem in the continuous real domain followed by a rounding operation. We show that the variance of the relaxed estimator increases with K^2 and K when operating with U-CPT and A-CPT mechanisms, respectively. The distribution of the estimators under U-CPT, A-CPT-F and A-CPT-D is found to follow an exponential, Gaussian, and Student's t-like distribution, respectively. Analyses evince the superiority of A-CPT-D, which is also corroborated via numerical results. We reveal several interesting trade-offs and highlight potential research directions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro