## References

- [1] P.-A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim. 16 (2005), vol 16, no 2, 531–547.
- [2] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math. 16 (1966), no. 1, 1–3.
- [3] D. P. Bertsekas, Nonlinear programming, 2nd edition, Athena Scientific, Belmont, Massachusetts, 1999.
- [4] K. Lange, Optimization, 2nd edition, Springer texts in statistics, New York 2013.
- [5] J. D. Lee, M. Simchowitz, M. I. Jordan and B. Recht, Gradient descent only converges to minimizers, JMRL: Workshop and conference proceedings, vol 49 (2016), 1–12.
- [6] I. Panageas and G. Piliouras, Gradient descent only converges to minimizers: Non-isolated critical points and invariant regions, 8th Innovations in theoretical computer science conference (ITCS 2017), Editor: C. H. Papadimitrou, article no 2, pp. 2:1–2:12, Leibniz international proceedings in informatics (LIPICS), Dagstuhl Publishing. Germany.
- [7] S. Ruder, An overview of gradient descent optimisation algorithms, arXiv: 1609.04747.
- [8] T. T. Truong, Convergence to minima for the continuous version of Backtracking Gradient Descent, arXiv: 1911.04221.
- [9] T. T. Truong and T. H. Nguyen, Backtracking gradient descent method for general functions with applications to Deep Learning, arXiv: 1808.05160v2.
- [10] https://github.com/hank-nguyen/MBT-optimizer

Comments

There are no comments yet.