DeepAI
Log In Sign Up

Convolutional Neural Networks Deceived by Visual Illusions

11/26/2018
by   Alexander Gomez Villa, et al.
8

Visual illusions teach us that what we see is not always what it is represented in the physical world. Its special nature make them a fascinating tool to test and validate any new vision model proposed. In general, current vision models are based on the concatenation of linear convolutions and non-linear operations. In this paper we get inspiration from the similarity of this structure with the operations present in Convolutional Neural Networks (CNNs). This motivated us to study if CNNs trained for low-level visual tasks are deceived by visual illusions. In particular, we show that CNNs trained for image denoising, image deblurring, and computational color constancy are able to replicate the human response to visual illusions, and that the extent of this replication varies with respect to variation in architecture and spatial pattern size. We believe that this CNNs behaviour appears as a by-product of the training for the low level vision tasks of denoising, color constancy or deblurring. Our work opens a new bridge between human perception and CNNs: in order to obtain CNNs that better replicate human behaviour, we may need to start aiming for them to better replicate visual illusions.

READ FULL TEXT

page 3

page 4

page 6

page 11

page 12

page 13

page 14

page 15

12/03/2019

Visual Illusions Also Deceive Convolutional Neural Networks: Analysis and Implications

Visual illusions allow researchers to devise and test new models of visu...
03/02/2019

Quaternion Convolutional Neural Networks

Neural networks in the real domain have been studied for a long time and...
01/31/2019

Is Image Memorability Prediction Solved?

This paper deals with the prediction of the memorability of a given imag...
05/14/2018

Learning Dual Convolutional Neural Networks for Low-Level Vision

In this paper, we propose a general dual convolutional neural network (D...
12/16/2022

On Human Visual Contrast Sensitivity and Machine Vision Robustness: A Comparative Study

It is well established in neuroscience that color vision plays an essent...
02/15/2022

A precortical module for robust CNNs to light variations

We present a simple mathematical model for the mammalian low visual path...
10/08/2018

Diagnosing Convolutional Neural Networks using their Spectral Response

Convolutional Neural Networks (CNNs) are a class of artificial neural ne...

Code Repositories

NNVisualIllusions

Final project for neural networks and machine learning


view repo