Convexity Not Required: Estimation of Smooth Moment Condition Models
Generalized and Simulated Method of Moments are often used to estimate structural Economic models. Yet, it is commonly reported that optimization is challenging because the corresponding objective function is non-convex. For smooth problems, this paper shows that convexity is not required: under a global rank condition involving the Jacobian of the sample moments, certain algorithms are globally convergent. These include a gradient-descent and a Gauss-Newton algorithm with appropriate choice of tuning parameters. The results are robust to 1) non-convexity, 2) one-to-one non-linear reparameterizations, and 3) moderate misspecification. In contrast, Newton-Raphson and quasi-Newton methods can fail to converge for the same estimation because of non-convexity. A simple example illustrates a non-convex GMM estimation problem that satisfies the aforementioned rank condition. Empirical applications to random coefficient demand estimation and impulse response matching further illustrate the results.
READ FULL TEXT